電機驅(qū)動是利用電動機產(chǎn)生的力或力矩,直接或經(jīng)過減速機構(gòu)驅(qū)動工業(yè)機械手,以獲得所需的位置、速度、加速度。電機驅(qū)動是技術(shù)較為成熟、應(yīng)用廣泛的一種驅(qū)動方式,為大多
數(shù)靈巧手所采用。
電機驅(qū)動的靈巧手的驅(qū)動形式可以分為旋轉(zhuǎn)型驅(qū)動和直線型驅(qū)動。
采用旋轉(zhuǎn)型驅(qū)動的靈巧手以 Stanford/JPL 手為代表,其驅(qū)動系統(tǒng)由直流電機和齒輪
減速機構(gòu)組成,因而體積較大,驅(qū)動系統(tǒng)只能放在手掌部位,通過腱進(jìn)行手指關(guān)節(jié)的
遠(yuǎn)距離驅(qū)動。
近年來,微型驅(qū)動器和減速器的發(fā)展為手指驅(qū)動系統(tǒng)的微型化和集成化創(chuàng)造了條件。
例如,德國的 DLR 靈巧手采用直線型驅(qū)動器來驅(qū)動關(guān)節(jié),其直線驅(qū)動器將旋轉(zhuǎn)電機、
旋轉(zhuǎn)直線轉(zhuǎn)換結(jié)構(gòu)和減速機都集成在靈巧手內(nèi)部。該靈巧手采用了模塊化的設(shè)計思想,
由四根完全相同的手指組成,每根手指有 4 個關(guān)節(jié),3 個自由度,末端的 2 個關(guān)節(jié)仿
照人手設(shè)計成 1:1 的耦合運動。
混合置式靈巧手將一部分驅(qū)動器放在手臂,既保證了驅(qū)動力,也降低了靈巧手本體的體積, 使得靈巧手更加擬人化
驅(qū)動器內(nèi)置式靈巧手各關(guān)節(jié)具有較好的剛性,更利于傳感器的直接測量,且模塊化設(shè)計利于更換維護(hù);整手尺寸較大,關(guān)節(jié)靈活度下降
靈巧手的外觀設(shè)計更加擬人化,手指本體更加纖細(xì);可以采用更大的驅(qū)動電機,從而增大手指的輸出力;驅(qū)動器與手本體之間距離遠(yuǎn)增加了控制器設(shè)計的難度
第一階段是從 20 世紀(jì) 70 年代—20 世紀(jì) 90 年代,典型代表是日本的 Okada、美國的 Stanford/JPL 和 Utah/MIT;第二階段是從 20 世紀(jì) 90 年代到 2010 年
靈巧手是機器人操作和動作執(zhí)行的末端工具,滿足兩個條件:指關(guān)節(jié)運動時能使物體產(chǎn)生任意運動,指關(guān)節(jié)固定時能完全限制物體的運動,定義靈巧手是指數(shù)≥3,自由度≥9 的末端執(zhí)行器
特斯拉公布了 6 種規(guī)格的執(zhí)行器,旋轉(zhuǎn)執(zhí)行器采用諧波減速器+電機的方案,線性執(zhí)行器采用絲杠+電機的方案,對于手掌關(guān)節(jié),其采用了空心杯電機+蝸輪蝸桿的結(jié)構(gòu)
人形機器人有更強的柔性化水平,更好的環(huán)境感知能力和判斷能力,首要需要解決的問題是如何實現(xiàn)像人一樣去運動,能夠兼顧可靠性
28個執(zhí)行器分別為肩關(guān)節(jié)(單側(cè)三自由度旋轉(zhuǎn)關(guān)節(jié))6個,肘關(guān)節(jié)(單側(cè)直線關(guān)節(jié))2個,腕部關(guān)節(jié)(單側(cè)2個直線+1個旋轉(zhuǎn))6個,腰部(二自由度旋轉(zhuǎn)關(guān)節(jié))2個
無框力矩電機沒有外殼,可以提供更大的設(shè)備空 間,中間是中空形式的,便于走線;在設(shè)計中,可以使整個機器體積更小,因此可以提供更大的功率密度比
型伺服驅(qū)動器有三種類型,分別為常規(guī)伺服驅(qū)動器,SEA 伺服驅(qū)動器,本體伺服驅(qū)動器;主要由力矩電機,諧波減速器,電機編碼器,輸出編碼器,驅(qū)動板,制動器組成
控制系統(tǒng)根據(jù)指令及傳感信息,向驅(qū)動系統(tǒng)發(fā)出指令,控制其完成規(guī)定的運動,控制系統(tǒng)主要由控制器(硬件)和控制算法(軟件)組成
電機驅(qū)動控制手段先進(jìn),速度反饋容易,絕大部分機器人使用電機驅(qū)動;液壓驅(qū)動體積小重量輕,是機器人Atlas使用的驅(qū)動方案;氣動驅(qū)動安全性高,應(yīng)用于仿生機器人等